Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 166, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36977975

RESUMEN

BACKGROUND: Glasswort (Salicornia persica) is identified as a halophyte plant, which is one of the most tolerant plants to salt conditions. The seed oil of the plant contains about 33% oil. In the present study, the effects of sodium nitroprusside (SNP; 0, 0.1, 0.2, and 0.4 mM) and potassium nitrate (KNO3; 0, 0.5, and 1%) were evaluated on several characteristics of glasswort under salinity stress (0, 10, 20, and 40 dS/m). RESULTS: morphological features, phenological traits, and yield parameters such as plant height, number of days to flowering, seed oil, biological yield, and seed yield significantly decreased in response to severe salt stress. However, the plants needed an optimal salinity concentration (20 dS/m NaCl) to obtain high amounts of seed oil and seed yield. The results also showed that a high level of salinity (40 dS/m NaCl) caused a decrease in plant oil and yield. In addition, by increasing the exogenous application of SNP and KNO3, the seed oil and seed yield increased. CONCLUSIONS: The application of SNP and KNO3 were effective in protecting S. persica plants from the deleterious effects of severe salt stress (40 dS/m NaCl), thereby restoring the activity of antioxidant enzymes, increasing the proline content, and maintaining cell membrane stability. It seems that both factors, i.e. SNP and KNO3, can be applied as mitigators of salt stress in plants.


Asunto(s)
Chenopodiaceae , Cloruro de Sodio , Nitroprusiato/farmacología , Cloruro de Sodio/farmacología , Estrés Salino , Aceites de Plantas , Salinidad
2.
BMC Vet Res ; 18(1): 357, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153497

RESUMEN

BACKGROUND: Pregnancy, parturition, and the onset of lactation represent an enormous physiological and hormonal challenge to the homeostasis of dairy animals, being a risk for their health and reproduction. Thus, as a part of the homothetic changes in preparturition period, goats undergo a period of IR as well as uncoupled GH/IGF-1 axis. The objective for this study was to determine the effect of berberine (BBR) during the peripartal period on hormonal alteration and somatotropic axis in dairy goats as well as glucose and insulin kinetics during an intravenous glucose tolerance test (IVGTT). At 21 days before the expected kidding date, 24 primiparous Saanen goats were assigned randomly to 4 dietary treatments. Goats were fed a basal diet from wk. 3 antepartum (AP) until wk. 3 postpartum (PP) supplemented with 0 (CTRL), 1 (BBR1), 2 (BBR2), and 4 (BBR4) g/d BBR. Blood samples were collected on days - 21, - 14, - 7, 0, 7, 14, and 21 relative to the expected kidding date. An IVGTT was also performed on day 22 PP. RESULTS: Compared with CTRL, supplementation with either BBR2 or BBR4 increased DMI at kidding day and PP, as well as body conditional score (BCS) and milk production (p ≤ 0.05). On d 7 and 14 PP plasma glucose was higher in BBR2- and BBR4-treated than in CTRL. The glucagon concentration was not affected by BBR during the experimental period. However, supplemental BBR indicated a tendency to decrease in cortisol concentration on days 7 (p = 0.093) and 14 (p = 0.100) PP. Lower plasma GH was observed in BBR than in non-BBR goats (p ≤ 0.05). Plasma IGF-1 concentration was enhanced in both BBR2 and BBR4 at kidding and day 7 PP (p ≤ 0.05). During the IVGTT, glucose area under the curve (AUC), clearance rate (CR), T1/2, and Tbasal was lower (p ≤ 0.05) in both BBR2 and BBR4 goats as compared with CTRL. Likewise, the insulin CR was higher (p ≤ 0.05) in goats receiving either BBR2 or BBR4 which was accompanied by a lower insulin T1/2 and AUC. CONCLUSIONS: Altogether, our results indicated an improved glucose and insulin status along with the modulation of the somatotropic axis and glucose and insulin response to IVGTT in dairy goats supplemented with 2 and 4 g/d BBR.


Asunto(s)
Berberina , Factor I del Crecimiento Similar a la Insulina , Animales , Berberina/farmacología , Berberina/uso terapéutico , Glucemia , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Glucagón , Glucosa , Cabras/fisiología , Hidrocortisona , Insulina , Lactancia/fisiología , Leche , Parto , Embarazo
3.
Vet Sci ; 9(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35202329

RESUMEN

The objective of this study was to investigate the effect of berberine (BBR) supplementation on productivity, antioxidant markers, and the fatty acid (FA) profile in the colostrum and milk of goats. Twenty-four primiparous Saanen goats were supplemented with 0, 1, 2, and 4 g/d (per goat) of BBR in control (CON), BBR1, BBR2, and BBR4 groups (n = 6 per group), respectively, from 21 days before expected kidding to 21 days after parturition. Blood sampling was carried out at -21, -14, -7, 0, 7, 14, and 21 d relative to delivery. Colostrum was collected within the first and second milking (d 1 of lactation), and milk was harvested weekly after kidding. Both BBR2 and BBR4 increased dry matter intake (DMI) (p ≤ 0.05) and energy balance (EB) as well as colostrum and milk production. Both BBR2 and BBR4 decreased (p ≤ 0.05) plasma levels of cholesterol, haptoglobin, and ceruloplasmin, while elevating the plasma albumin and paraoxonase (p ≤ 0.05), which may indicate that BBR mitigates inflammation during the transition period. BBR reduced (p ≤ 0.05) malondialdehyde (MDA) and increased (p ≤ 0.05) total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in blood, colostrum, and milk. Concentrations of de novo fatty acid in colostrum and milk were increased (p ≤ 0.05) with both BBR2 and BBR4. Free fatty acid (FFA) concentration in colostrum and milk fat were lower (p ≤ 0.05) in BBR2 and BBR4 compared to CON. The concentration of saturated fatty acids (SFAs) in colostrum and milk fat increased (p ≤ 0.05) with BBR2 and BBR4, while unsaturated fatty acids (USFAs) decreased (p ≤ 0.05) in milk. In summary, supplementation with at least 2 g/d BBR may enhance the EB and antioxidant status of dairy goats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA